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We consider a Taylor-Dean-type flow of an electrically conducting liquid in an annulus between two infi-
nitely long perfectly conducting cylinders subject to a generally helical magnetic field. The cylinders are
electrically connected through a remote, perfectly conducting endcap, which allows a radial electric current to
pass through the liquid. The radial current interacting with the axial component of magnetic field gives rise to
the azimuthal electromagnetic force, which destabilizes the base flow by making its angular momentum
decrease radially outwards. This instability, which we refer to as the pseudo–magnetorotational instability
�MRI�, looks like an MRI although its mechanism is basically centrifugal. In a helical magnetic field, the radial
current interacting with the azimuthal component of the field gives rise to an axial electromagnetic force, which
drives a longitudinal circulation. First, this circulation advects the Taylor vortices generated by the centrifugal
instability, which results in a traveling wave as in the helical MRI �HMRI�. However, the direction of travel of
this wave is opposite to that of the true HMRI. Second, at sufficiently strong differential rotation, the longi-
tudinal flow becomes hydrodynamically unstable itself. For electrically connected cylinders in a helical mag-
netic field, hydrodynamic instability is possible at any sufficiently strong differential rotation. In this case, there
is no hydrodynamic stability limit defined in the terms of the critical ratio of rotation rates of inner and outer
cylinders that would allow one to distinguish a hydrodynamic instability from the HMRI. These effects can
critically interfere with experimental as well as numerical determination of MRI.

DOI: 10.1103/PhysRevE.79.066314 PACS number�s�: 47.20.Qr, 47.65.�d, 95.30.Lz

I. INTRODUCTION

The magnetorotational instability �MRI� can account for
the formation of stars and entire galaxies in the accretion
disks. For an object to form, the matter circling around it has
to slow down by transferring its angular momentum out-
wards. The observed accretion rates suggest the angular mo-
mentum transfer in the astrophysical disks to be turbulent
while the velocity distribution in them seems to be hydrody-
namically stable. A possible solution to this problem was
suggested by Balbus and Hawley �1,2�, who pointed out that
a Keplerian velocity distribution in accretion disk can be
destabilized by a magnetic field in the process known as the
MRI �3,4�. This proposition has triggered a number of ex-
perimental studies trying to reproduce MRI in laboratory
�5,6�. The main technical difficulty to such experiments is
the magnetic Reynolds number Rm that is required to be
�10 at least. For a typical liquid metal with the magnetic
Prandtl number Pm�10−5–10−6, this corresponds to a hy-
drodynamic Reynolds number Re=Rm /Pm�106–107 �7�.
Thus, the base flow on which the MRI is to be observed may
be turbulent at such Reynolds numbers independently of
MRI as in the experiment of Sisan et al. �5�. A possible
solution to this problem was proposed by Hollerbach and
Rüdiger �8�, who suggested that MRI can take place in the
Taylor-Couette �TC� flow at Re�103 when the imposed
magnetic field is helical rather than purely axial as in the
classical case. Theoretical prediction of this new type of he-
lical MRI �HMRI� was soon succeeded by a claim of its
experimental observation by Stefani et al. �9–11�. Subse-

quently, these experimental observations have been ques-
tioned by Liu et al. �12� who find no such instability in their
inviscid theoretical analysis of finite length cylinders with
insulating endcaps. In a more realistic numerical simulation,
Liu et al. �13� confirm the experimental results, though note
that there is no MRI at the experimental parameters when
ideal TC boundary conditions are used. Szklarski �14�
showed later that the ideal TC requires a slightly different
parameters for the HMRI to set in. Despite the numerical
evidence, Liu et al. �13,15� suspected the observed phenom-
enon to be a transient growth rather than a self-sustained
instability. This paper shows that the observation of a self-
sustained instability which looks like an MRI does not nec-
essarily mean that the latter is MRI.

Recently, we found that HMRI can be self-sustained and
thus experimentally observable in a system of sufficiently
large axial extension because there is not only convective but
also absolute HMRI threshold �16�. However, the compari-
son with the experimental results �9–11� revealed that HMRI
has been observed slightly beyond the range of its absolute
instability, where it is expected to be self-sustained according
to the ideal TC flow model. This discrepancy with the ex-
perimental observations is probably due to the deviation of
the real base flow from the ideal TC flow used in the theo-
retical analysis. Such a deviation, however, poses a major
problem for the interpretation of experimental results, espe-
cially for the identification of HMRI. Namely, the Rayleigh
line defining the hydrodynamic stability limit of the ideal TC
flow is used as a reference point to discriminate between a
magnetically modified Taylor vortex flow and HMRI. The
latter two are hardly distinguishable by the oscillation fre-
quency, which varies weakly as the Rayleigh line is crossed.
The main problem is the hydrodynamic stability limit of the*j.priede@coventry.ac.uk
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real base flow, i.e., its actual Rayleigh line, which may differ
from that of the ideal TC flow. Therefore the latter cannot be
used for the interpretation of experimental results. This am-
biguity is not resolved by the direct numerical simulation of
the problem either even if there is a perfect agreement with
the experiment. It is because the notion of MRI is based on
the ideal TC flow with a fixed hydrodynamic stability limit,
which is affected neither by the end effects nor by the mag-
netic field. Unfortunately, this is the case neither for experi-
ments nor for numerical simulations. First, there is an Ekman
pumping at the endcaps, which can spread up to significant
but nevertheless limited distances into the base flow pro-
vided that the latter is hydrodynamically stable. The Ekman
circulation can be reduced by using several independently
rotating rings for the endcaps �6� or by splitting the latter into
two rings of a certain size attached to the inner and outer
cylinders, respectively �14�. Another important effect pointed
out by Szklarski and Rüdiger �17�, which can significantly
affect the base flow, is related with the Hartmann layers
forming at the endcaps in axial magnetic field.

In this paper, we show that there may be additional effects
in the presence of a magnetic field when well conducting
inner and outer cylinders are electrically connected through
an endcap as in the original Potsdam Rossendorf Magnetic
Instability Experiment �PROMISE� �9–11�. The endcap act-
ing in parallel with the Hartmann layer allows a radial cur-
rent to close through the liquid between the cylinders. The
interaction of radial current with axial magnetic field gives
rise to an azimuthal electromagnetic force, which reduces the
velocity difference between the endcap and the liquid above
it. Depending on the strength of the magnetic field, this elec-
tromagnetic force can render the profile of azimuthal base
flow centrifugally unstable. As a result, in axial magnetic
field, the instability can extend significantly beyond the Ray-
leigh line similarly to the classical MRI. Moreover, in helical
magnetic field, the interaction of radial current with the azi-
muthal component of magnetic field gives rise to an axial
electromagnetic force, which drives a longitudinal flow.
First, this longitudinal flow going upwards along the inner
cylinder, where the azimuthal base flow is centrifugally de-
stabilized, advects Taylor vortices that results in a traveling
wave as in the HMRI. However, the direction in which these
Taylor vortices are advected is opposite to the direction of
travel of true HMRI wave. Second, for sufficiently large dif-
ferential rotation, longitudinal flow may become linearly un-
stable at any rotation rate ratio.

The paper is organized as follows. In Sec. II we formulate
the problem in the inductionless approximation. The base
flow for electrically connected cylinders is derived in Sec.
III. Section IV introduces the linear stability problem. Nu-
merical results for axial and helical magnetic fields are pre-
sented in Secs. V A and V B, respectively. The paper is con-
cluded with a summary in Sec. VI.

II. PROBLEM FORMULATION

Consider an incompressible fluid of kinematic viscosity �
and electrical conductivity � filling the annulus between two
long concentric cylinders with inner radius Ri and outer ra-

dius Ro rotating with angular velocities �i and �o. The flow
is subject to a generally helical steady external magnetic field
B0=B�e�+Bzez with axial and azimuthal components Bz
=B0 and B�=�B0Ri /r in cylindrical coordinates �r ,� ,z�,
where � is a dimensionless parameter characterizing the geo-
metrical helicity of the field. The fluid is supposed to be
poorly conducting so that the induced magnetic field is neg-
ligible with respect to the imposed one. This corresponds to
the so-called inductionless approximation, which holds for
the HMRI characterized by small magnetic Reynolds number
Rm=�0�v0L�1, where �0 is the permeability of vacuum,
v0 and L are the characteristic velocity and length scale �18�.
The velocity of fluid flow v is governed by the Navier-Stokes
equation with electromagnetic body force

�v

�t
+ �v · ��v = −

1

	
� p + ��2v +

1

	
j 
 B0, �1�

where the induced current follows from Ohm’s law for a
moving medium

j = ��E + v 
 B0� . �2�

In addition, we assume that the characteristic time of veloc-
ity variation is much longer than the magnetic diffusion time,
�0��m=�0�L2, that leads to the quasistationary approxima-
tion, according to which �
E=0 and E=−�, where  is
the electrostatic potential. Mass and charge conservation re-
quire � ·v=� · j=0.

III. BASE STATE

An ideal axially unbounded system shown in Fig. 1�a�
admits a translationally invariant base state with purely azi-
muthal velocity distribution v0�r�=e�v0�r�. Such a flow in
axial magnetic field induces a radial electric field, which
gives rise only to the potential difference between the inner
and outer cylinder but no radial current is induced because of
the charge conservation. Thus, in an ideal system, the mag-
netic field affects the stability of the base flow without alter-
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FIG. 1. �Color online� �a� An ideal electrically uncoupled sys-
tem and �b� a real system with the inner and outer cylinders elec-
trically connected via the endcap and inner vessel wall; �1� outer
cylinder, �2� inner cylinder, �3� inner wall, and �4� endcap.
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ing the latter, which is the main premise underlying MRI. In
reality both cylinders may not be completely electrically de-
coupled from each other. For example, in an axially bounded
system such a coupling may be provided by an electrically
conducting endcap serving as a closing circuit between the
inner and outer cylinders. This corresponds to the principal
setup of the PROMISE experiment illustrated in Fig. 1�b�.
The liquid metal in the narrow gap separating the inner cyl-
inder �2� from the endcap �4� and the inner wall �3�, which
both form a solid well-conducting vessel together with the
outer cylinder, provides a sliding contact. This allows a ra-
dial electric current to pass through the liquid between the
outer and inner cylinder and then to close either directly
through the endcap or via the inner wall as sketched in Fig.
1�b�. Note that this setup is analogous to the homopolar gen-
erator also known as the Faraday disk.

In the following, an axially uniform radial current j0
=erj0�r� is supposed to pass through the liquid and close
through a remote endcap. Note that this current is generated
by the differential rotation of cylinders in axial magnetic
field rather than applied externally as it is planned in the
so-called Kurchatov MRI experiment �19,20�. Our main as-
sumption is that the system is sufficiently extended so that an
axially uniform base state can develop sufficiently far away
from the ends as in the classical TC setup. Thus, we neglect
any direct effect of the endcap on the base flow, which is
affected only by an axially uniform radial current passing
through the liquid. The charge conservation yields j0�r�
=J0 /r, where J0 is a constant that will be determined later by
specifying the connection between the cylinders. First, the
interaction of radial current with axial magnetic field gives
rise to the azimuthal electromagnetic force, which affects the
profile of azimuthal velocity. The latter is governed by the �
component of Eq. �1�,

1

r2

d

dr
�r3 d

dr
�v0

r
�	 =

J0B0

�	

1

r
,

whose solution can be written as v0�r�= v̄0�r�
−J0B0 / �2�	�ṽ0�r�, where v̄0�r� and ṽ0�r� are the profiles of
the classical Couette and electromagnetically driven Dean
�21� flows,

v̄0�r� = r
Ro

2�o − Ri
2�i

Ro
2 − Ri

2 +
1

r

�o − �i

Ro
−2 − Ri

−2 ,

ṽ0�r� = r
Ro

2 ln Ro − Ri
2 ln Ri

Ro
2 − Ri

2 +
1

r

ln Ro − ln Ri

Ro
−2 − Ri

−2 − r ln r .

Linear stability of such a Taylor-Dean �TD� flow in purely
axial magnetic field has been considered by Szklarski and
Rüdiger �17�. In contrast to us, they regard the Dean compo-
nent of the flow to be independent of the Couette one but
ignore that the current driving the former is induced by the
latter, i.e., the differential rotation of the cylinders.

Second, in a helical magnetic field, radial current interact-
ing also with the azimuthal component of magnetic drives a
longitudinal flow w0�z� governed by the z component of Eq.
�1�,

1

r

d

dr
�r

dw0

dr
� =

1

�	
� �p0

�z
−

J0B0�i

r2 � .

The solution can be presented as

w0�r� = −
P0

4	�
w̃0,1�r� −

J0B0�i

2	�
w̃0,2�r� ,

where �i=�Ri and w̃0,1�r� and w̃0,2�r� are the parts of flow
driven by the pressure gradient and by electromagnetic force

w̃0,1�r� =
Ro

2 ln−1 Ro − Ri
2 ln−1 Ri

ln−1 Ro − ln−1 Ri
+

Ro
2 − Ri

2

ln Ro − ln Ri
ln r − r2,

w̃0,2�r� = ln Ro ln Ri − ln�RoRi�ln r + ln2 r .

The axial pressure gradient P0=�p0 /�z, which is constant for
a longitudinally uniform flow, is related to the electromag-
netically driven part of the flow by the flow rate conservation

Ri

Row0�r�rdr=0 yielding P0=−2J0B0�iK0, where

K0 = �
Ri

Ro

w̃0,2�r�rdr/�
Ri

Ro

w̃0,1�r�rdr

results in a simple but long analytic expression which
is skipped here. Eventually, we obtain w0�r�
=J0B0�i / �2	��w̃0�r�, where w̃0�r�=K0w̃0,1�r�− w̃0,2�r� de-
pends on the geometry only. In order to determine the last
unknown quantity J0, we need to specify how the inner and
outer cylinders are connected to each other by the endcap. In
the following, we focus on the experimental configuration
shown in Fig. 1�b�, where the outer cylinder �1� forms a solid
body together with the endcap �4� and inner wall �3�, while
the inner cylinder �2� is separated from the endcap and the
inner wall by a relatively thin gap filled with the liquid
metal, which serves as a sliding contact. First, we integrate
Ohm’s law �Eq. �2�� over the liquid gap giving us the radial
voltage drop between the inner and outer cylinders

o − i = Bo�
Ri

Ro

v̄0�r�dr − J0� 1

�
ln

R0

Ri
+

B0
2

2�	
I� , �3�

where I=
Ri

Ro�ṽ0�r�+�i
2w̃0�r� /r�dr represents another long

analytic expression. Second, since there is no axial voltage
drop along perfectly conducting cylinders, the same radial
voltage drop can be found alternatively by integrating Ohm’s
law radially from Ri to Ro over the endcap, which is also
assumed to be perfectly conducting,

o − i =
1

2
Bo�o�Ro

2 − Ri
2� + J0R , �4�

where R is a phenomenological parameter introduced to ac-
count for effective linear resistance of the sliding liquid-
metal contact between the inner cylinder and the endcap.
Substituting this into Eq. �3� we obtain
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J0 = B0��o − �i�� ln Ro − ln Ri

Ro
−2 − Ri

−2 +
Ri

2

2
�


�R +
1

�
ln

Ro

Ri
+

B0
2

2�	
I�−1

, �5�

which is the last quantity defining the base state.
Now it remains to estimate the resistance R introduced in

Eq. �4� for the setup shown in Fig. 1�b� that is described in
detail in Refs. �10,11�. As seen, there are two parallel paths
for the current to connect between the inner cylinder �2� and
the endcap �4�. First, the current can connect directly over
the vertical gap of �10 mm width between the inner cylin-
der and the endcap. Second, the current can connect over the
annular gap of 4 mm width between the inner cylinder �2�
and the inner wall �3� and then pass along the latter toward
the endcap �4�. Because of a much larger contact area, the
effective resistance of the second path is obviously much
smaller than that of the first one, which thus may be ne-
glected in this parallel connection. On the other hand, the
gap width of the second path is by an order of magnitude
smaller than the 40 mm width of whole liquid layer between
the inner and outer cylinders. Thus, the resistance of the
second path may be neglected with respect to that of the
whole liquid layer, which is connected in series with the
latter. In the following, we assume R=0 that supposes a
negligible contact resistance between the inner and outer cyl-
inders, which appears to be a good approximation to this
PROMISE setup. The limit of R→� corresponds to the
classical case of electrically decoupled cylinders. Note that
in Eq. �5� R stands next to the electromagnetic term �B0

2

implying that even a finite R may become negligible in suf-
ficiently strong magnetic field. In addition, note that the ac-
tual PROMISE setup is considerably more complex than this
simple model. In particular, we assume that the sidewalls are
perfectly conducting with respect to the liquid metal,
whereas the conductivity of Copper sidewalls is only 13
times higher than that of the GaInSn eutectic alloy used in
the experiment. Although our model is relatively rough, it
can still highlight some principal effects overlooked by more
elaborate numerical models.

IV. PERTURBED STATE

We consider a perturbed state

v,p

j,
��r,t� = v0,p0

j0,0
��r� + v1,p1

j1,1
��r,t� ,

where v1, p1, j1, and 1 present small-amplitude perturba-
tions for which Eqs. �1� and �2� after linearization take the
form

�v1

�t
+ �v1 · ��v0 + �v0 · ��v1 = −

1

	
� p1 + ��2v1 +

1

	
j1 
 B0,

�6�

j1 = ��− �1 + v1 
 B0� . �7�

In this paper, we focus on axisymmetric perturbations, which
are typically more unstable than nonaxisymmetric ones for

TC flow �22�; however this is not always the case for the
conventional TD flow �23�. Analysis of nonaxisymmetric
perturbations for an electromagnetically driven TD flow is
outside the scope of this paper. In the axisymmetric case, the
solenoidity constraints are satisfied by meridional stream
functions for fluid flow and electric current as

v = ve� + � 
 ��e��, j = je� + � 
 �he�� .

Note that h is the azimuthal component of the induced mag-
netic field, which is used subsequently instead of  for the
description of the induced current. Thus, we effectively re-
tain the azimuthal component of the induction equation to
describe meridional components of the induced current,
while the azimuthal current is related explicitly to the radial
velocity. In addition, for numerical purposes, we introduce
also the vorticity �=�
v=�e�+�
 �ve�� as an auxiliary
variable. The perturbation is sought in the normal-mode form

�v1,�1,�1,h1��r,t� = �v̂,�̂,�̂, ĥ��r�e�t+ikz,

where � is, in general, a complex growth rate and k is the
axial wave number. Henceforth, we proceed to dimensionless
variables by using Ri, Ri

2 /�, Ri�i, B0, and �B0Ri�i as the
length, time, velocity, magnetic field, and current scales, re-
spectively. The nondimensionalized governing equations are

�v̂ = Dkv̂ − Re ik�w0v̂ − r−1�rv0���̂� + Ha2ikĥ , �8�

��̂ = Dk�̂ − Re ik�w0�̂ + r�r−1w0����̂ − 2r−1v0v̂�

− Ha2ik�ik�̂ + 2�r−2ĥ� , �9�

0 = Dk�̂ + �̂ , �10�

0 = Dkĥ + ik�v̂ − 2�r−2�̂� , �11�

where Dkf �r−1�rf���− �r−2+k2�f and the prime stands for
d /dr; Re=Ri

2�i /� and Ha=RiB0
�� / �	�� are the Reynolds

and Hartmann numbers, respectively. Boundary conditions
for the flow perturbation and the electric stream function on
the perfectly conducting inner and outer cylinders at r=1 and

r=�, respectively, are v̂= �̂= �̂�= �rĥ��=0.
The governing Eqs. �8�–�11� for perturbation amplitudes

were solved in the same way as in Refs. �16,18� by using a
spectral collocation method on a Chebyshev-Lobatto grid
with a typical number of internal points N=32, which en-
sured the accuracy of about five digits.

The dimensionless azimuthal and axial velocity compo-
nents of the base flow

v0�r� = v̄0�r� +
1

2
Ha2J̄0ṽ0�r� , �12�

w0�r� =
1

2
Ha2J̄0�w̃0�r� , �13�

follow straightforwardly from the corresponding dimensional
counterparts when Ri and �i are replaced by 1, Ro and �o by
�=Ro /Ri and �=�o /�i, respectively, and �i by �; the di-
mensionless counterpart of J0 is
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J̄0 =
J0

�B0�iRi
2

= �� − 1�� ln �

�−2 − 1
+

1

2
��R + ln � +

1

2
Ha2I�−1

, �14�

where R=R� and I=I /Ri
2 are the dimensionless counter-

parts of R and I, respectively. As seen from Eqs. �12�–�14�,
for Ha�1 velocity profiles tend to asymptotic solutions
which, as noted above, depend neither on the contact resis-
tance R nor on the magnetic field strength

v0�r� � v̄0�r� + J̃0ṽ0�r� , �15�

w0�r� � J̃0�w̃0�r� , �16�

where J̃0= ��−1�� ln �

�−2−1
+ 1

2 � /I.

V. NUMERICAL RESULTS

A. Axial magnetic field

We start with an axial magnetic field ��=0�, for which the
base flow is purely azimuthal. The profiles of angular mo-
mentum rv0�r� are shown in Fig. 2 for several cylinder rota-
tion rate ratios � and various Hartmann numbers. For �=0,
shown in Fig. 2�a�, which corresponds only to the inner cyl-
inder rotating, the profile without the magnetic field is cen-

trifugally unstable with the angular momentum decreasing
radially outward. In this case, the magnetic field slows down
the overall rotation rate of the liquid making the angular
momentum decrease faster at the inner cylinder that may
result even in the reversal of the sense of liquid rotation at
the outer cylinder when the magnetic field is sufficiently
strong. This effect is due to the magnetic field trying to
eliminate the differential rotation between the liquid and the
endcap, which is attached to the outer cylinder and thus ro-
tates with a lower angular velocity than the liquid above it as
long as ��1. A similar effect can also be observed in Fig.
2�b� for �=0.25, which without the magnetic field corre-
sponds to a marginally stable state with a constant angular
momentum distribution. In this case, the magnetic field again
retards the liquid rotation so rending the distribution of an-
gular momentum centrifugally unstable at the inner cylinder
and stable at the outer one. For �=0.5 shown in Fig. 2�c�,
the profile without magnetic field is centrifugally stable with
the angular momentum increasing radially outward. How-
ever, a strong enough magnetic field changes the distribution
of the angular momentum at the inner cylinder from radially
increasing to decreasing one so rending the profile centrifu-
gally unstable.

This is confirmed by the critical Reynolds number plotted
against � for various Hartmann numbers in Fig. 3�a� with the
corresponding critical wave numbers shown in Fig. 3�b�. As
seen in Fig. 3�a�, without magnetic field �Ha=0�, the critical
Reynolds number tends to infinity as � approaches the Ray-
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FIG. 2. �Color online� Angular momentum profiles for �a� �=0, �b� �=0.25, �c� �=0.5, and various Hartmann numbers for cylinders
with �=2 in axial magnetic field ��=0� with no contact resistance �R=0�.
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leigh line �c=�−2=0.25 defined by d�r2�� /dr=0, at which
the profile of angular momentum becomes centrifugally
stable. As the magnetic field is increased, the instability starts
to extend beyond the Rayleigh line reaching ��0.65 at suf-
ficiently large Hartmann numbers. Although this extension of
the instability beyond the Rayleigh line may look like an
MRI, it has a principally different physical mechanism.
Namely, in the MRI, the magnetic field destabilizes the flow
without altering it, whereas here the magnetic field does alter
the base flow by rendering it centrifugally unstable as dis-
cussed above. Moreover, the standard MRI in axial magnetic
field is not captured by the inductionless approximation
�Pm=0� used here �24�. Thus, in axial magnetic field, this
centrifugal instability occurring beyond the Rayleigh line can
easily be distinguished from the true MRI.

B. Helical magnetic field

As seen in Fig. 4, in a helical magnetic field, the base flow
besides the azimuthal component has also an axial one,
which is driven by the interaction of radial current with the
azimuthal component of magnetic field. In the configuration
with the endcap attached to a slower-rotating outer wall, the
induced electric current is flowing radially outward, as dis-
cussed above and, thus, the resulting axial electromagnetic
force is directed upward. Because both the current and azi-
muthal magnetic field decrease radially outward as �1 /r, the
resulting electromagnetic force is stronger at the inner wall,
where it drives the liquid upward as seen in Figs. 4�b�, 4�d�,
and 4�f�. Since the annular gap is supposed to be closed at
both ends, the constant axial pressure gradient arising in the
response to the electromagnetic force drives a return flow
along the outer cylinder, which compensates for the upward
one along the inner cylinder. This axial flow in the azimuthal
magnetic field, in turn, induces an additional electrostatic
potential, which contributes to that induced by the azimuthal
flow in the axial field as described by Eq. �3�. The total
potential difference induced by the flow between the inner
and outer cylinders balances that induced by the rotation of
bottom in the axial magnetic field, which is given by Eq. �4�.
The potential balance determines the magnitude of the in-
duced radial current defined by Eq. �5�, which, in turn, inter-

acts with the magnetic field and disturbs the flow. Thus, the
perturbation of the azimuthal flow is weaker in helical mag-
netic field than it is in a purely axial one because a part of the
potential difference is compensated by the axial flow �see
Figs. 2, 4�a�, 4�c�, and 4�e��.

The instability characteristics in a helical magnetic field
plotted in Fig. 5 differ considerably from those in axial mag-
netic field shown in Fig. 3. In contrast to the axial magnetic
field, now the most unstable mode of instability is oscilla-
tory, i.e., a traveling wave as for the HMRI. However, it is
important to note that the phase velocity of this wave, which
is determined by the sign of the frequency shown in Fig.
5�c�, is directed upward oppositely to that of true HMRI. The
reversed phase velocity is due to the longitudinal flow, which
is absent for the ideal HMRI with electrically decoupled cyl-
inders. As seen in Figs. 4�a�, 4�c�, and 4�e�, the radial current
interacting with the axial component of the magnetic field
causes the angular momentum to decrease radially outward
at the inner cylinder that renders the flow centrifugally un-
stable. Furthermore, the Taylor vortices arising at the inner
cylinder are advected by the longitudinal flow upward. The
advection in this case obviously dominates over the direct
electromagnetic effect of helical magnetic field, which would
drive the true HMRI wave in the opposite direction.

Moreover, in a helical magnetic field in contrast to purely
axial one, the instability is seen to extend much farther be-
yond the Rayleigh line up to the limit of solid-body rotation
defined by �=1 and even beyond it, which is not considered
here. The instability in helical magnetic field differs signifi-
cantly from that in purely axial field. As seen in Fig. 5, for
Ha=1, shortly after the Rayleigh line, the most unstable
mode switches from the initial Taylor vortices branch to an-
other one, which is obviously associated with the axial flow.
For larger Hartmann numbers, this transition proceeds
smoothly with the critical wave number developing a maxi-
mum at certain � when Ha�10. Beyond the Rayleigh line,
the critical Reynolds number first decreases with the Hart-
mann number up to Ha�10 and then starts to grow for larger
Ha again. For larger �, the most unstable mode jumps to
another branch with a considerably smaller critical wave
number and positive frequency, which corresponds to the
opposite direction of the phase velocity now coinciding with
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FIG. 3. �Color online� �a� Critical Reynolds number Rec and �b� wave number kc versus � at various Hartmann numbers for cylinders
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that of the true HMRI. Note that such jumps of the critical
mode are characteristic also for the conventional TD flow
�25,26�.

VI. SUMMARY AND CONCLUSIONS

We have considered linear stability of a TD-type flow of
an electrically conducting liquid in the annulus between two
infinitely long perfectly conducting and differentially rotat-
ing cylinders in the presence of a generally helical magnetic
field. The cylinders were supposed to be electrically con-

nected through a remote endcap. We showed that this elec-
trical connection can render the base flow hydrodynamically
unstable. First, the azimuthal base flow in an axial magnetic
field gives rise to a radial emf. If the cylinders are electrically
decoupled, no current can close between them, and conse-
quently, the emf results in the radial charge redistribution,
which gives rise to the electrostatic potential whose gradient
compensates the original emf. If there is no current, there is
no electromagnetic force and no effect of the magnetic field
on the base flow either. This corresponds to the ideal TC
flow, which is used as a reference for the definition of MRI,
where the magnetic field is expected to destabilize the base
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flow by affecting only its disturbances but not the base flow
itself.

This is no longer the case when the cylinders are electri-
cally connected, and a radial current can close between them.
The interaction of radial current with the axial component of
the magnetic field gives rise to the azimuthal electromagnetic
force, which tries eliminate the velocity difference between
the endcap and the liquid above it. Depending on the strength
of magnetic field and the effective contact resistance between
the inner and outer cylinder, this electromagnetic force can
modify the profile of azimuthal base flow so that it becomes
centrifugally unstable. As a result, the magnetic field makes
the instability extend significantly beyond its apparent Ray-
leigh line so resembling MRI in the case of an unperturbed
TC flow. Furthermore, in a helical magnetic field, the inter-
action of radial current with the azimuthal component of
magnetic field gives rise to an axial electromagnetic force,
which drives a longitudinal flow. First, this longitudinal flow
going upward along the inner cylinder, where the azimuthal
base flow is destabilized by the magnetic field, advects Tay-
lor vortices, so giving rise to a traveling wave as in helical
MRI. However, the direction of the most unstable traveling
wave of this centrifugal instability is opposite to that of the
true MRI. Second, for sufficiently large differential rotation,
the longitudinal flow becomes hydrodynamically unstable it-
self. For electrically connected cylinders in helical magnetic
field, hydrodynamic instability is possible at any sufficiently

large differential rotation. In this case, there is no pure hy-
drodynamic stability limit defined in the terms of the critical
ratio of rotation rates of inner and outer cylinders that would
allow one to discriminate between magnetically modified hy-
drodynamic instability and the HMRI.

From the experimental point of view, a crucial test for the
pseudo–MRI would be the extension of the Taylor vortex
flow beyond the Rayleigh line in purely axial magnetic field
at Rm�1. The PROMISE experiment reports only one such
apparently successful test in which, however, the time-
averaged flow and thus stationary Taylor vortices, if any, are
removed �9�. Traveling wave appears as soon as the azi-
muthal component of the field is switched on. As to the he-
lical magnetic field, the experiment �11� seems to find the
right direction of the phase velocity in agreement with the
ideal HMRI model rather than that of the pseudo–MRI con-
sidered in this paper. But this does not necessarily mean that
the real base flow in the experiment is any closer to the ideal
TC one. Note that the nonaxisymmetric m=1 instability
mode unexpectedly observed in the PROMISE experiment is
characteristic for certain regimes of the conventional TD
flow �23�.

Although the current circulation through the liquid metal
has been eliminated in a modified PROMISE experiment
�27� by insulating the inner cylinder, the base flow still re-
mains strongly affected by the Ekman pumping due to the
endcaps which makes it more complex than the one used in
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this study. In the new PROMISE-2 setup �28,29�, the Ekman
pumping has been significantly reduced by using split rings
for the endcap, which is insulating now, and thus prevents
the current circulation through it. Although the instabilities
appear much sharper in the new setup than in the previous
one, the actual hydrodynamic stability limit, if any, of the
base flow and so the nature of the observed instabilities is
still unclear. In particular, as shown by Szklarski and Rüdiger
�17�, the base flow may significantly be affected by the mag-
netic field also when the endcaps are insulating provided that
Ha�10.

In conclusion, it is not appropriate to use the Rayleigh
line of the ideal TC flow as a criterion to determine the MRI
in a significantly different flow. More elaborate numerical
analysis may be necessary for this purpose.
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